A singularly perturbed problem with two parameters on a Bakhvalov-type mesh
نویسندگان
چکیده
منابع مشابه
Analysis of a Streamline-Diffusion Finite Element Method on Bakhvalov-Shishkin Mesh for Singularly Perturbed Problem
Abstract. In this paper, a bilinear Streamline-Diffusion finite element method on Bakhvalov-Shishkin mesh for singularly perturbed convection – diffusion problem is analyzed. The method is shown to be convergent uniformly in the perturbation parameter ǫ provided only that ǫ ≤ N. An O(N(lnN)) convergent rate in a discrete streamline-diffusion norm is established under certain regularity assumpti...
متن کاملFinite difference scheme for singularly perturbed convection- diffusion problem with two small parameters
In this article a numerical method involving classical finite difference scheme on non-uniform grid is constructed for a singularly perturbed convection-diffusion boundary value problem with two small parameters affecting the convection and diffusion terms. The scheme has been analyzed for uniform convergence with respect to both singular perturbation parameters. To support the theoretical erro...
متن کاملQuasilinear singularly perturbed problem with boundary perturbation.
A class of quasilinear singularly perturbed problems with boundary perturbation is considered. Under suitable conditions, using theory of differential inequalities we studied the asymptotic behavior of the solution for the boundary value problem.
متن کاملConcentration on minimal submanifolds for a singularly perturbed Neumann problem
We consider the equation −ε2∆u+u = u in Ω ⊆ R , where Ω is open, smooth and bounded, and we prove concentration of solutions along k-dimensional minimal submanifolds of ∂Ω, for N ≥ 3 and for k ∈ {1, . . . , N − 2}. We impose Neumann boundary conditions, assuming 1 < p < N−k+2 N−k−2 and ε → 0+. This result settles in full generality a phenomenon previously considered only in the particular case ...
متن کاملInterior spikes of a singularly perturbed Neumann problem with potentials
where Ø is a smooth bounded domain of R with external normal ν, N ≥ 3, 1 < p < (N + 2)/(N − 2), J : R → R and V : R → R are C functions. In [5], the first author, extending the classical results by Ni and Takagi, in [3, 4], proved that there exist solutions of (1) that concentrate at maximum and minimum points of a suitable auxiliary function defined on the boundary ∂Ø and depending only on J a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2016
ISSN: 0377-0427
DOI: 10.1016/j.cam.2015.07.011